organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Methylpiperidinium bromide

Qian Xu

Ordered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: xqchem@yahoo.com.cn

Received 12 April 2012; accepted 19 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.008 Å; R factor = 0.049; wR factor = 0.118; data-to-parameter ratio = 25.4.

In the title organic–inorganic hybrid salt, $C_6H_{14}N^+ \cdot Br^-$, N– H $\cdot \cdot \cdot Br$ hydrogen bonds link the cations and anions, forming extended hydrogen-bonded chains along the *c* axis.

Related literature

For general background to ferroelectric organic frameworks, see: Ye *et al.* (2006); Zhang *et al.* (2008, 2010).

Experimental

Crystal data $C_6H_{14}N^+ \cdot Br^ M_r = 180.09$ Orthorhombic, *Pbcn* a = 22.137 (4) Å b = 9.918 (2) Å c = 7.5853 (15) Å

V = 1665.5 (6) Å ³
Z = 8
Mo $K\alpha$ radiation
$\mu = 4.85 \text{ mm}^{-1}$
T = 293 K
$0.55 \times 0.44 \times 0.36$ mm

Data collection

Rigaku SCXmini diffractometer	15678 measured reflections
Absorption correction: multi-scan	1907 independent reflections
(CrystalClear; Rigaku, 2005)	1142 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.134, \ T_{\max} = 0.223$	$R_{\rm int} = 0.109$

Refinement

F

$R[F^2 > 2\sigma(F^2)] = 0.049$	75 parameters
$wR(F^2) = 0.118$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$
1907 reflections	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots Br1$	0.90	2.34	3.238 (4)	176
$N1 - H1B \cdot \cdot \cdot Br1^{i}$	0.90	2.36	3.262 (3)	176

Data collection: *SCXmini* (Rigaku, 2006); cell refinement: *SCXmini*; data reduction: *SCXmini*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2056).

References

Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

- Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.

Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.

Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.

supplementary materials

Acta Cryst. (2012). E68, o1962 [doi:10.1107/S1600536812022878]

2-Methylpiperidinium bromide

Qian Xu

Comment

Dielectric-ferroelectrics constitute an interesting class of materials, comprising organic ligands,metal-organic coordination compounds and organic-inorganic hybrids.(Zhang *et al.*, 2010; Zhang *et al.*, 2008; Ye *et al.*, 2006). Unfortunately,the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent below the melting point of the compound (428-429K). We have found that title compound has no dielectric disuniformity from 80 K to 405 K. Herein we descibe the crystal structure of this compound.

Regarding its crystal structure, the asymmetric unit of the title compound consists of a 2-methylpiperidinium cation and a bromide anion (Fig. 1). The cations and anions are connected by N—H···Br hydrogen bonds, which make a great contribution to the stability of the crystal structure (Fig. 2 and Table 1).

Experimental

The title compound was obtained by the addition of hydrobromic acid (0.8 g, 0.01 mol) to a solution of 2-methylpiperidine (0.97 g, 0.01 mol) in water, *i.e.*, in the stoichiometric ratio of 1:1. Good quality single crystals were obtained by slow evaporation of water after two days (the chemical yield is 65%).

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.97–0.98 Å, N—H = 0.90 Å and with $U_{iso}(H) = 1.2U_{iso}(C, N)$ and $U_{iso}(H) = 1.5U_{iso}(C)$ for methyl hydrogen atoms.

Computing details

Data collection: *SCXmini* (Rigaku, 2006); cell refinement: *SCXmini* (Rigaku, 2006); data reduction: *SCXmini* (Rigaku, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

Figure 1

Molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates a hydrogen bond.

Figure 2

A view of the packing of the title compound along the *a* axis. Dashed lines indicate hydrogen bonds.

2-Methylpiperidinium bromide

Crystal data	
$C_6H_{14}N^+ \cdot Br^-$	F(000) = 736
$M_r = 180.09$	$D_{\rm x} = 1.436 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbcn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2n 2ab	Cell parameters from 3638 reflections
a = 22.137 (4) Å	$\theta = 3.0 - 27.5^{\circ}$
b = 9.918 (2) Å	$\mu = 4.85 \text{ mm}^{-1}$
c = 7.5853 (15) Å	T = 293 K
V = 1665.5 (6) Å ³	Block, colorless
Z = 8	$0.55 \times 0.44 \times 0.36 \text{ mm}$

Data collection

Rigaku SCXmini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{\min} = 0.134, T_{\max} = 0.223$	15678 measured reflections 1907 independent reflections 1142 reflections with $I > 2\sigma(I)$ $R_{int} = 0.109$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.4^{\circ}$ $h = -28 \rightarrow 28$ $k = -12 \rightarrow 12$ $l = -9 \rightarrow 9$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.118$	$w = 1/[\sigma^2(F_o^2) + (0.0407P)^2]$
S = 1.05	where $P = (F_0^2 + 2F_c^2)/3$
1907 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
75 parameters	$\Delta \rho_{\rm max} = 0.38 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0022 (5)
Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.0022 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.6672 (2)	0.7098 (5)	0.0449 (6)	0.0546 (13)	
H1	0.6680	0.6902	0.1715	0.065*	
C2	0.6608 (3)	0.8597 (6)	0.0205 (7)	0.0817 (19)	
H2A	0.6633	0.8808	-0.1041	0.098*	
H2B	0.6939	0.9049	0.0797	0.098*	
C3	0.6018 (3)	0.9124 (6)	0.0922 (8)	0.097 (2)	
H3A	0.6007	0.8994	0.2189	0.117*	
H3B	0.5988	1.0082	0.0686	0.117*	
C4	0.5503 (3)	0.8414 (6)	0.0099 (7)	0.0799 (18)	
H4A	0.5128	0.8733	0.0615	0.096*	
H4B	0.5494	0.8611	-0.1153	0.096*	
C5	0.5556 (2)	0.6950 (5)	0.0365 (6)	0.0594 (13)	
H5A	0.5226	0.6497	-0.0231	0.071*	
H5B	0.5528	0.6747	0.1613	0.071*	
C6	0.7220 (2)	0.6499 (6)	-0.0376 (8)	0.104 (2)	

supplementary materials

H6A	0.7210	0.5536	-0.0242	0.156*	
H6B	0.7575	0.6850	0.0189	0.156*	
H6C	0.7229	0.6722	-0.1607	0.156*	
N1	0.61363 (14)	0.6448 (4)	-0.0327 (4)	0.0436 (9)	
H1A	0.6158	0.5554	-0.0128	0.052*	
H1B	0.6143	0.6574	-0.1502	0.052*	
Br1	0.61324 (2)	0.32302 (5)	0.03937 (6)	0.0540 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.055 (3)	0.060 (3)	0.049 (3)	-0.010 (2)	-0.014 (2)	0.001 (2)
C2	0.100 (5)	0.071 (4)	0.075 (4)	-0.040 (4)	-0.030 (4)	0.017 (3)
C3	0.160 (7)	0.043 (3)	0.088 (5)	0.015 (4)	0.003 (5)	-0.002 (3)
C4	0.095 (5)	0.062 (4)	0.082 (4)	0.027 (3)	0.012 (3)	0.004 (3)
C5	0.050 (3)	0.060 (3)	0.068 (3)	0.008 (2)	0.013 (2)	0.003 (3)
C6	0.046 (4)	0.143 (6)	0.121 (6)	0.003 (3)	0.000 (3)	0.027 (4)
N1	0.048 (2)	0.041 (2)	0.042 (2)	0.0030 (16)	0.0024 (18)	0.0000 (16)
Br1	0.0752 (4)	0.0440 (3)	0.0427 (3)	0.0012 (2)	-0.0015 (2)	-0.0005 (2)

Geometric parameters (Å, °)

C1—N1	1.473 (5)	C4—H4A	0.9700
C1—C6	1.488 (7)	C4—H4B	0.9700
C1—C2	1.504 (7)	C5—N1	1.475 (5)
C1—H1	0.9800	С5—Н5А	0.9700
C2—C3	1.507 (8)	С5—Н5В	0.9700
C2—H2A	0.9700	C6—H6A	0.9600
C2—H2B	0.9700	С6—Н6В	0.9600
C3—C4	1.478 (8)	С6—Н6С	0.9600
С3—НЗА	0.9700	N1—H1A	0.9000
С3—Н3В	0.9700	N1—H1B	0.9000
C4—C5	1.471 (6)		
N1—C1—C6	108.2 (4)	C5—C4—H4B	109.5
N1—C1—C2	107.9 (4)	C3—C4—H4B	109.5
C6—C1—C2	114.9 (4)	H4A—C4—H4B	108.1
N1—C1—H1	108.6	C4—C5—N1	110.7 (4)
C6—C1—H1	108.6	C4—C5—H5A	109.5
C2-C1-H1	108.6	N1—C5—H5A	109.5
C1—C2—C3	112.4 (4)	C4—C5—H5B	109.5
C1—C2—H2A	109.1	N1—C5—H5B	109.5
C3—C2—H2A	109.1	H5A—C5—H5B	108.1
C1—C2—H2B	109.1	C1—C6—H6A	109.5
C3—C2—H2B	109.1	C1—C6—H6B	109.5
H2A—C2—H2B	107.9	H6A—C6—H6B	109.5
C4—C3—C2	110.5 (5)	C1—C6—H6C	109.5
С4—С3—Н3А	109.5	H6A—C6—H6C	109.5
С2—С3—Н3А	109.5	H6B—C6—H6C	109.5
C4—C3—H3B	109.5	C1—N1—C5	114.3 (4)

supplementary materials

С2—С3—Н3В	109.5	C1—N1—H1A	108.7
НЗА—СЗ—НЗВ	108.1	C5—N1—H1A	108.7
C5—C4—C3	110.5 (5)	C1—N1—H1B	108.7
C5—C4—H4A	109.5	C5—N1—H1B	108.7
C3—C4—H4A	109.5	H1A—N1—H1B	107.6

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D···A	<i>D</i> —H··· <i>A</i>
N1—H1A···Br1	0.90	2.34	3.238 (4)	176
N1—H1 <i>B</i> ···Br1 ⁱ	0.90	2.36	3.262 (3)	176

Symmetry code: (i) x, -y+1, z-1/2.